

I SEE REASONING – LKS2 Contents

Introduction Place value Place value – negative numbers Place value - rounding Place value – Roman Numerals Addition **Subtraction** Addition and subtraction **Multiplication** Division Multiplication and division **Fractions Decimals** Measures <u>Measures – money</u> Measures – time Measures – area and perimeter Geometry – shape Geometry – coordinates **Statistics** Answers I See Maths Resources

CONTENTS

I SEE REASONING – LKS2 Tasks for enriching mathematical talk

Introduction

I See Reasoning – LKS2 is written to provide rich, open contexts for mathematical discussion and enquiry.

Children build on their current understanding when solving **'I know... so...**' questions. Concepts are represented visually in **'Read the picture'** tasks. Friends work systematically to find all possible solutions for the **'How many ways?**' challenges.

The resource is comprised of 240 varied tasks, linked to all different areas of the lower KS2 mathematics curriculum. These activities correspond to US grades 2-3 and Australian years 3-4. Screenshots of tasks can be used within presentations or printed and given to children.

I hope that **I See Reasoning** enriches the maths learning in your classroom!

Gareth Metcalfe

www.iseemaths.com

For use by the purchasing institution only. Copyright *I See Maths Itd*. Circulation is prohibited.

PLACE VALUE

Which picture?

Draw lines to match the two pictures to the correct number of cubes.

How many?

PLACE VALUE

Which answer?

Which number is 10 more than 396?

- (a) 496
- (b) 386 Explain your choice
- (c) 406

Which answer?

Ten more than a number is 2696. What is the number?

(a) 2706	Explain your choice
(b) 2686	

Different ways

To turn **180** into **210** you can...

add ____ tens

OR add _____ ones

- OR add _____ tens and _____ ones
- OR add _____ hundred and subtract _____ tens

Different ways

To turn **2940** into **3000** you can...

- add _____ tens
- OR add ____ ones
- OR add _____ tens and _____ ones
- OR add _____ hundred and subtract _____ tens

How many ways?

You have a pile of 100 coins and a pile of 10 coins. Make 230

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

How many ways?

You have a pile of 1000 coins and a pile of 100 coins.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

PLACE VALUE

Number lines

Show the position of **328** on each number line.

0	1 000
0	500
300	400
325	330
Estimate the position of the arrow.	
I I I I I I I O	100

PLACE VALUE

Number lines

Show the position of **7063** on each number line.

0	10000
7 000	8000
7 000	7100
7060	7070
Estimate the position of the arrow.	
	1 000

PLACE VALUE

PLACE VALUE

your numbers accurately on the number line below: 200 100 300 400 500 Different ways 8 Make different 3-digit numbers using the digits 0, 5 and 8. Position your numbers accurately on the \bigcap number line below: 400 600 1000 200 800

PLACE VALUE

Different ways

Make different 3-digit numbers

using the digits 1, 2 and 4. Position

Explore

Using the digits 3, 0 and 8 make the number that is **closest to 600.**

You can use each digit only once.

+ I SEE MATHS

Investigate

Make a 3-digit number. Each digit must be different.

Make another 3-digit number. Use the same digits.

Make the difference between the numbers as large as possible.

Explain

Put the following in order from fewest to most:

- A seconds to get changed for P.E.
- B countries in the world
- C children in your school
- D days until Christmas

How many ways?

Put exactly 10 counters on a hundreds, tens, units mat to make a number.

The difference between your number and 500 must be less than 150.

Your number must be odd.

Example	Hundreds	Tens	Ones
This is 145, made with 10 counters	•	•••	• • • • •

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

Missing digits Fill in the missing digits.

Find different ways.

PLACE VALUE – NEGATIVE NUMBERS I SEE REASONING – LKS2

I know... so... The difference between -5 and 3 is 8 The difference between - and 3 is 6 The difference between - and 3 is $\frac{8}{-5}$

Draw

Draw an arrow to show the position of each number.

PLACE VALUE – NEGATIVE NUMBERS I SEE REASONING – LKS2

Estimate

Estimate the value of the hidden numbers.

Different ways

The difference between a number and -2 is 5.

What could the number be?

There are two possible answers!

PLACE VALUE – NEGATIVE NUMBERS I SEE REASONING – LKS2

Different ways

The first negative number in the sequence is -3.

0 is not in the sequence.

At least the first three numbers in the sequence are positive.

Write the first three numbers in the sequence.

There are different ways this can be done!

Example:

10, 7, 4...

These are the first three numbers in a sequence.

There will not be a 0 in this sequence.

-2 is the first negative number in this sequence.

Explain the mistakes

What is 245 rounded to the nearest 10?

- Mistake 1: 50 Mistake 2: 240 Mistake 3: 200
- I know... so...

678 rounded to the nearest _____ is **680** 678 rounded to the nearest 100 is _____ 295 rounded to the nearest 10 is _____ 295 rounded to the nearest 100 is _____

Which answer?

What is the largest whole number that, when rounded to the nearest 10, is 150?

- (a) 149
- (b) 154
- (c) 155

How many ways?

Rounded to the nearest 10, my number is 250. Rounded to the nearest 100, my number is 300. My number is odd.

What could my number be?

Level 1: I can find one possible answer Level 2: I can find different possible answers Level 3: I know how many possible answers there are

Explain

163 and 238 round to the same 100.163 and 238 round to a different 10.Explain why.

Fill the gaps

Number	674	153		
Rounded to nearest 10	670		350	450
Rounded to nearest 100	700		400	400

Explain

Rounded to the nearest £100, Ben has £200. Rounded to the nearest £10, Helen has £150. Helen has more money than Ben.

Explain how this is possible.

Race to 500 A 2-4 player game

You will be given a start number. Take turns to roll a dice. On your go, change your number in this way: Roll a 1: plus or minus 1 from your number Roll a 2: plus or minus 10 from your number Roll a 3: plus or minus 100 from your number Roll a 4: round your number to the nearest 10 Roll a 5: round your number to the nearest 100 Roll a 6: free choice from the options above

The first player to get to 500 wins!

Start numbers: 258, 310, 648, 686, 295, 382, 373, 701, 696, 718, 284, 728

PLACE VALUE - ROUNDING

True or false? IV = 15 XIX = 21 IV = 4XII = 12

True or false? XL = 60 XI = 100 XXV = 115XL = 40

Order

Order the numbers from smallest to largest.

VIII C XX XVI

What do you notice?

PLACE VALUE – ROMAN NUMERALS I SEE REASONING – LKS2

Spot the pattern

22 in Roman Numerals is written $\mathbf{X}\mathbf{X}\mathbf{I}\mathbf{I}$

- 32 in Roman Numerals is written _____
- 42 in Roman Numerals is written ____

_ in Roman Numerals is written ${f LII}$

Rank by difficulty

Write these numbers in Roman Numerals:

44

33

51

Always, sometimes or never?

'In Roman Numerals, bigger numbers have more symbols than smaller numbers.'

PLACE VALUE – ROMAN NUMERALS I SEE REASONING – LKS2

Estimate

Estimate the value of the missing numbers. Complete using Roman Numerals.

Explain

Here are some examples of numbers written in Roman Numerals:

1 = I	3 = III	4 = IV
5 = V	8 = VIII	9 = IX
10 = X	13 = XIII	14 = XIV
50 = L	80 = LXXX	40 = XL
100 = C	103 = CIII	104 = CIV

Explain why we don't still use Roman Numerals.

Rank by difficulty

49 + 48

56 + 42

73 + 49

Rank by difficulty

247 + 65

364 + 235

273 + 98

ADDITION

Mental or written? 34 + 25 + 22 82 + 39 83 + 82 55 + 27 + 15

Mental or written?

1062 + 1251

375 + 125

534 + 399

4085 + 46

ADDITION

Explain the mistakes

Gold, silver, bronze

Here are three ways of calculating 36 + 29 + 14

Rank each method as gold, silver or bronze.

ADDITION

Gold, silver, bronze

Here are three ways of calculating 228 + 194

Rank each method as gold, silver or bronze.

ADDITION

Missing digits

Fill in the missing digits.

Missing digits 73 + 46 05

Fill in the missing digits.

How many ways?

Fill in the missing digits.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

How many ways?

Fill in the missing digits.

Level 1: I can find a way

Level 2: I can find different ways

Level 3: I know how many ways there are

Investigate

Stage 1: complete using digits 0-9 (use each digit no more than once)

Stage 2: complete using digits 0-9 (use each digit no more than once) and with the digit 9 in this position:

Rank by difficulty

137 – 56 163 – 59

187 – 56

Rank by difficulty 50 – 19 139 – 19 101 – 19

Rank by difficulty

2000 – 60 3003 – 1996

2645 – 1082

- I know... so...
- 200 ____ = 128
- 200 70 = 130
- 2000 70 = ____

I know... so...

- 326 191 = _____
- 326 187 = 139
- 328 189 = ____

Spot the pattern

SUBTRACTION

Gold, silver, bronze

Here are three ways of calculating 405-297

Rank each method as gold, silver or bronze.

Explain the mistakes

 Mistake 1
 Mistake 2

 200 - 7 = |03| Mistake 2

 $\pounds 10 - \pounds 8.90 = \pounds 2.0$

Mistake 3 100 – 47 = 63

SUBTRACTION

+ I SEE MATHS

Explain the mistakes

628 – 5	6
Mistake 1	
628 -56	
632	

Mistake 2

5⁵28 -56 068 Mistake 3

Missing digits Fill in the missing digits.

Missing digits Fill in the missing digits.

2 - 2 = 99

SUBTRACTION

How many ways?

Fill in the missing digits.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

Missing digits

Fill in the missing digits.

How many ways?

Complete using digit cards 0-9. Position the digits 6 and 7 as shown:

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

How many ways?

Complete using digit cards 0-9. Position the digits 0 and 6 as shown:

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

SUBTRACTION

know... so... 437 + 285 = 722 $722 - _ = 287$ $_ - 435 = 285$ know...so... $603 - 194 = _$ 600 - 200 = 400

_____ - 401 = 199

Broken calculator

'The 9 and 5 keys on my calculator are broken!' How can I use it to work out:

ADDITION AND SUBTRACTION

Which picture? Draw lines to match the Jeans T-shirt question to the correct bar £16 £28 model £50 Ava buys a t-shirt and a £28 £16 pair of jeans. OR How much change £50 does she get from £50? £28 £16 £40 Jen has £40. She wants £16 £28 to buy a t-shirt and a pair of jeans. OR How much more money £40 does she need? £28 £16

ADDITION AND SUBTRACTION

Fill the gaps

Fill in each of the blank boxes.

MENU Sandwich: £2.40 Drink: 75p Fruit: 40p

Question	Bar model	Answer
Sam buys a drink and a sandwich. He gets 35p change. How much did he pay?	£2.40 75p 35p	
Dan has £3.50. He buys a sandwich and a drink. Does he have enough money to buy fruit?		No
	£5.00 £2.40 40p	
Write a question here that mo	atches the bar model picture	

ADDITION AND SUBTRACTION

Which answer? 13 + 9 = ____ + 10 What is the missing number?

- (a) 12
- (b) 32 Explain how you know.
- (c) 22

(c) 45

How many ways?

The missing numbers are positive whole numbers.

Fill in the missing numbers.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

How many ways?

The missing numbers are positive whole numbers.

18 – 🗌 > 🗌 + 13

Fill in the missing numbers.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

ADDITION AND SUBTRACTION

Which number sentence?

Write a multiplication number sentence for each example. One has been done for you.

I know... so...

MULTIPLICATION

Which number sentence?

Write a multiplication number sentence for each example. One has been done for you.

I know... so...

MULTIPLICATION

The same as...

 7×4 is the same as:

 $\underline{7} \times \underline{2} + \underline{7} \times \underline{2}$

 6×5 is the same as:

	$\bullet \bullet \bullet \bullet \bullet \bullet$	
	$\bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet$
	$\bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
	$\bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet \bullet \bullet$
× + ×	× + ×	x + x

I know... so...

- 18×7 =
- $16 \times 7 = 112$
- 8 × 14 = ____

MULTIPLICATION

Read the picture

How many dots?

Which number sentence(s) do you see?

Read the picture

How many dots?

•••	•••
•••	•••
•••	•••
•••	•••

•••	•••
•••	•••

••• •••	•••
•••	•••
$\bullet \bullet \bullet$	$\bullet \bullet \bullet$

•••	•••
•••	•••
•••	•••
•••	•••

Which number sentence(s) do you see?

MULTIPLICATION

Draw

Draw

This picture shows 60 dots using dice patterns.

•		•
	•	
•		•

Draw a different picture of 60 dots using dice patterns.

MULTIPLICATION

MULTIPLICATION

Matching number sentences

+ number sentence	× number sentence
6+6+12	6 × 4
8+8+8+8+8	
	3×2×2
15+10+5	

Rank by difficulty

15 × 6

23 × 3

18 × 5

MULTIPLICATION

Explain the mistakes

34 × 6

Which one's correct?

Find the correct calculation. Spot the mistakes.

MULTIPLICATION

Missing digits Fill in the missing digits.

Missing digits

Fill in the missing digits.

Missing digits × 8 Fil

Fill in the missing digits.

MULTIPLICATION

Missing digits

Fill in the missing digits.

How many ways?

Fill in the missing digits.

Level 1: I can find a way Level 2: I can find different ways

Level 3: I know how many ways there are

Explore

Complete the headings of the Venn diagram:

Add a different number in each section.

MULTIPLICATION

DIVISION

Explain

Explain

3 rows
5 columns
15 dots in total
4 rows
columns
24 dots in total

DIVISION

Different ways

- 17 circles
 - 2 columns
 - **8** rows
- 1 left over

17 circles
columns
rows
2 left over

17 circles
columns
rows
left over
18 circles
columns
rows
left over

÷6=6

DIVISION

Explain:

Rank by difficulty

60÷4 32÷4

14÷4

Rank by difficulty

120÷6

32÷6

78÷6

Different methods

What's the best way to answer each question?

Different methods

What's the best way to answer each question?

600÷1	600÷10
6	00÷7
600÷200	600÷4

Which one's correct?

Find the correct calculation. Spot the mistakes.

 $84 \div 3$

 21
 28
 24

 384
 384
 384

Which one's correct?

Find the correct calculation. Spot the mistakes. 625 ÷ 5

Explore

Put these numbers in the correct section of the Venn diagram: 16 20 14 24 18

Add another number to each section.

Explore

Put a number in each section of the Venn diagram:

DIVISION

Investigate

There is a positive whole number in each box.

Which number sentence can be completed in more ways?

How many ways?

Complete using digits 0-9. Position the digit 4 as shown.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

Different ways

Each jump on the number line is the same.

MULTIPLICATION AND DIVISION

Explain the mistakes

Mistake 1 3.5 × 10 = 3.50 **Mistake 2** 35 × 100 = 350

Mistake 3 $35 \div 10 = 0.35$

Mistake 4 350 ÷ 10 = 3500

Which answer?

6 × 🚺 = 24 ÷ 2

What is the missing number?

MULTIPLICATION AND DIVISION

How many ways?

The missing numbers are positive whole numbers.

Fill in the missing numbers.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

How many ways?

The missing number is a positive whole number.

Fill in the missing number.

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

MULTIPLICATION AND DIVISION

How many ways?

The missing numbers are positive whole numbers.

Fill in the missing numbers.

Level 1: I can find a way

Level 2: I can find different ways

Level 3: I know how many ways there are

How many ways?

You have these cards. One card is upside down.

How many number sentences can you make? The red card can be any number.

> Tip: put the = sign in different positions in your number sentences

MULTIPLICATION AND DIVISION

Which picture?

Tim and three friends get the train. The total cost is £24.

How much does each person pay?

Which bar model represents the question correctly?

Which picture?

Draw lines to match the questions to the bar models:

4 friends share 8 cherries.

How many cherries each?

4 pizzas shared by 8 friends.

How much pizza each?

4 friends each have 8 sweets.

How many in total?

MULTIPLICATION AND DIVISION

Which picture?

When it's not a leap year there are four weeks in February.

How many days in February on a non-leap year?

Which bar model represents the question correctly?

Which answer?

Mr Jackson has two pairs of trousers, three different ties and four shirts. How many different outfits can he wear?

MULTIPLICATION AND DIVISION

Fill the gaps

3 glasses fill a bottle

2 bottles fill a jug

6 egg cups fill a glass

- ____ egg cups fill a bottle
- ____ glasses fill a jug
- ____ egg cups fill a jug
 - __ jugs fill ____ egg cups

MULTIPLICATION AND DIVISION

Which shapes are one-third blue?

Read the pictures

Which shapes are three-quarters blue?

FRACTIONS

What fraction of the shape is red? What fraction of the shape is blue?

red =

blue =

Draw Shade in $\frac{1}{4}$ of each shape:

I agree with Kam I agree with Jack I agree with both Explain:

Explain the mistake

FRACTIONS

What fraction of each picture is blue?

finish the drawing

Spot the patterns

Complete the sequences:

$$\begin{bmatrix} 1 & \frac{8}{10} & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

$$\frac{5}{7}, \frac{6}{7}, \frac{1}{7}$$

FRACTIONS

Complete the missing parts in the bar models:

Draw

Show the position of 1 on each number line:

FRACTIONS

Different ways

Which fractions could be at either end of the number line? 5

10

Draw

Position the age of each child on the number line.

Amy: $\frac{1}{5}$ year old

Cruz: 15 months old

Which method?

Which bar model represents the question correctly?

Which picture?

Match the question to the bar model. Use the bar models to answer the questions.

FRACTIONS

Which picture?

Match the question to the bar model. Use the bar models to answer the questions.

I know... so...

$$\frac{1}{10} \text{ of } 40 =$$

$$\frac{3}{10} \text{ of } 40 = 12$$

$$\frac{3}{10} \text{ of } 80 =$$

FRACTIONS

$$know...so...$$
 $\frac{1}{4}$ of 80 = 20

 $\frac{3}{4}$ of 80 = 60

 $\frac{3}{4}$ of $\boxed{1}$ = 120

3 ways

Complete in 3 different ways:

 $\frac{1}{4}$ of $\boxed{=\frac{1}{2}}$ of $\boxed{}$ What do you notice?

3 ways

Complete in 3 different ways:

$$\frac{1}{2}$$
 of $\boxed{=\frac{1}{10}}$ of $\boxed{=\frac{1}{10}}$

What do you notice?

FRACTIONS

Different ways

Fill in the gaps. Find different ways.

Different ways

Fill in the gaps. Find different ways.

FRACTIONS

Rank by difficulty

$$\frac{4}{5} + \frac{1}{5}$$

$$\frac{3}{4} + \frac{3}{4}$$

$$\frac{3}{7} + \frac{2}{7}$$

$$\frac{1}{2} + \frac{2}{4}$$

FRACTIONS

Two ways

Fill in the gaps. Do in two different ways.

$$\frac{1}{1} + \frac{1}{4} = \frac{3}{4}$$

How many ways?

Fill in the missing numbers:

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

How many ways?

Fill in the missing numbers:

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

FRACTIONS

Explain the mistakes

Mistake 1 42÷10 = 420 Mistake 2

 $42 \div 10 = 0.42$

Mistake 3
$$\frac{L}{10} \sim 2$$

42÷10 = $L \sim 2$ 10 L^{L}_{2}

Missing numbers

Fill in the gaps using the numbers.

+ I SEE MATHS

Missing numbers

Fill in the gaps using the numbers.

True or false?

Which fraction(s) have been positioned correctly?

Which picture?

Which picture shows the correct position of $\frac{1}{4}$?

I know... so...

$$\frac{3}{4}$$
 of 100 = 75
 $\frac{3}{4}$ of 10 =
 $\frac{3}{4}$ of 1 =

DECIMALS

Agree or disagree?

320 is more than90 because ithas more digits.

0.32 is more than 0.9 because it has more digits.

Is it the same?

Is **0.24** the same as...

Two **0.1** coins and four **0.01** coins?

Are there any other ways?

DECIMALS

DECIMALS

Explain

Circle the unit(s) of measure that may be used to measure each item:

- The classroom bin \rightarrow mm cm m kg ml litres
- A letter \rightarrow mm cm m g kg ml
- A bath \rightarrow mm cm m kg litres

Which answer?

35cm + 60mm = ____ cm

- (a) 95cm
- (b) 635cm
- (c) 41cm

Rank by difficulty

4 km = _____ metres

4 mm = ____ cm

4 minutes = _____ seconds

MEASURES

Explain

Order these lengths from shortest to longest:

750mm 160cm 0.9m your height

Explore

Write these measures in the correct section of the Venn diagram:

Add some more units of measure

Which answer?

£10 - £7.90

- (a) £2.10
- (b) £3.1
- (c) £3.10

Which answer?

I spend £16.99 at the shop. I pay with a £20 note. How much change am I given?

Explain

Sometimes when I am paying for something that costs \pounds 6 I pay with a \pounds 10 **and a \pounds1 coin**.

Why might I do this?

MEASURES - MONEY

How many ways?

I spend 70p at the shop. I pay with exactly 5 coins. **Which coins do I use?**

Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

Different answers

I have less than 50p. You need at least 5 coins to make this amount of money.

How much money do I have?

Level 1: I can find a possible amount Level 2: I can find different possible amounts Level 3: I have found all the possible amounts

Which picture?

I pay for four packs of stickers with a £5 note.

I get £1.80 change.

What is the cost of a pack of stickers?

Which bar model represents the question correctly?

Work out the cost of a pack of stickers.

MEASURES - MONEY

Which picture?

Cost for swimming: $\pounds 3.20 - adult$ $\pounds 1.10 - child$ Two adults and three children go swimming. Lisa pays with a £10 note.

How much change is Lisa given?

Which bar model represents the question correctly?

£10							
£3.20	£3.20	£1.10	£1.10	£1.10			
OR							
	£10						
£3.20	£3.20	£1.1	0 £1.1	0 £1.10			

MEASURES - MONEY

Explain

Fill in the missing word(s).

An apple is more expensive than a banana.

An apple is cheaper than an orange.

A banana is

than an orange.

MEASURES - MONEY

Which answer?

20 minutes ago it was 7:45pm. **What is the time now?**

- (a) 8:05pm
- (b) 7:25pm
- (c) 7:65pm

I know... so...

- $2\frac{1}{2}$ hours after **10:15pm** the time is **12:45pm**
- $2\frac{1}{2}$ hours after **10:30pm** the time is
- $2\frac{1}{2}$ hours after **10:45pm** the time is

Order

Order these times from shortest to longest:

20 minutes 600 seconds $\frac{1}{4}$ hour

MEASURES - TIME

Order

Order these times from shortest to longest:

3 weeks 13 days 240 hours $\frac{1}{2}$ month

Estimate

There is a hand missing from each clock. For each clock, what time could it be?

MEASURES - TIME

Explain

Order the amount of time you have spent:

Brushing your teeth in the last two weeks

Eating yesterday

Exercising in the last 3 days

Explain Which shape is bigger?

Estimate

Estimate the perimeter:

MEASURES – AREA AND PERIMETER I SEE REASONING – LKS2

Estimate

Estimate the perimeter:

Explain

Order these shapes from the smallest to the largest perimeter <u>without</u> measuring them.

MEASURES – AREA AND PERIMETER I SEE REASONING – LKS2

Explain More blue or red?

Read the pictures

Tim's shape	Ben's shape		
Tim's shape has a Ben's shape.		are	a than
Tim's shape has a than Ben's shape.		per	imeter

MEASURES - AREA AND PERIMETER

Beth's shape has a _____ area than Zara's shape.

Beth's shape has a _____ perimeter than Zara's shape.

MEASURES - AREA AND PERIMETER

+

MEASURES – AREA AND PERIMETER I SEE REASONING – LKS2

Explore

This rectangle has an area of 24 squares:

Make other rectangles with areas of 24 squares. Make a rectangle with a larger perimeter. Make a rectangle with a smaller perimeter.

Explore

You will need squares with a side length of 1cm.

Using your squares, make shapes with a perimeter of 20cm and different areas.

Which type of shapes have a larger area?

GEOMETRY - SHAPE

Explore

Write the headings for the Venn diagram

GEOMETRY - SHAPE

Explore

Write the missing heading for the Venn diagram. Add shapes to each section.

GEOMETRY - SHAPE

Explain

What's the same? What's different?

Is it correct?

Are the lines of symmetry correct?

GEOMETRY - SHAPE

Explore

Write the questions in the branching database:

Order

Order the angles from smallest to largest:

GEOMETRY - SHAPE

Order

Order the marked angles from smallest to largest:

GEOMETRY – SHAPE

Read the picture

Which shapes can be printed using this square-based pyramid?

Two ways

One more square needs adding to each net to complete the net of a cube.

Complete in two ways.

GEOMETRY - SHAPE

Explain the mistakes

Reflect the shape in the mirror line.

GEOMETRY – SHAPE

Different ways

Think of possible coordinates for the blue dot.

Estimate

Estimate the coordinates of the red and green dots.

GEOMETRY - COORDINATES

Draw

Draw a dot to show the approximate position of the coordinate point (6,4):

True or false?

How Children in Class 3A Travel to School

Explain

Grace does a traffic survey to see which types of vehicles drive past school. Here are her results:

Cars: Htt Htt Htt Htt III Vans/Lorries: Htt III Bikes: Htt I Motorbikes: II Other: III

Why did Grace use tally marks to record her results rather than numbers?

When else would you use tally marks?

Mark the work

Cake	48
Yogurt	26
Fruit	18
None	8

The table shows the puddings that 100 children ate at school.

Mrs Yates asked her class to create a graph using this data.

Mark their work: find good things, suggest improvements.

STATISTICS

Explain

Which is the best performing train station?

Which graph?

For each example, should the data should be presented as a bar graph or a line graph?

Types of pets owned by children in the class.

- Height of a sunflower measured over 2 weeks.
- Today's temperature, measured every hour.
- Number of children at each after-school club.

Read the graph

What does this graph show? Explain.

Explain

In the Autumn term, Darmford Primary School carried out a survey to find out how many days per week children read at home.

In the Spring term, Darmford Primary School ran a 'Love to Read' scheme to get more children reading at home.

At the end of the term they repeated the survey.

Reading Survey Results, Autumn

Reading Survey Results, Spring

How successful was the 'Love to Read' scheme?

Explore

STATISTICS

The 22 children in Oak class went out to play.

Most children played on the playground or in the forest.

The number of children playing in the football cage was double the number playing in the forest.

There were 2 more children playing on the playground than playing in the forest.

Complete the bar graph to show where the children were playing.

Read the graphs

Draw lines to match each heading to the correct graph.

Time (seconds)

Answers

<u>Place value</u>

How many ways? example 1: Three ways (two 100s and three 10s; one 100 and thirteen 10s; twenty-three 10s)

How many ways? example 2: Five ways (four 1000s and one 100; three 1000s and eleven 100s; two 1000s and twenty-one 100s; one 1000 and thirty-one 100s; forty-one 100s)

Explore: 803

Investigate example 1: 102 and 43 (difference of 59)

Investigate example 2: Greatest possible difference is 792, made by using the digits 1, 9 and any other digit e.g. 941 - 149 = 792

How many ways? example 3: Nine ways (361, 415, 433, 451, 505, 523, 541, 613, 631)

Missing digits: 30+76=106, 30+86=116, 30+96=126

<u>Place value – negative numbers</u> Different ways example 2: Example solutions 12, 7, 2 or 15, 9, 3

Place value – rounding Which answer? 154

How many ways? Two ways (251 and 253)

Explain example 1: 163 and 238 rounded to the nearest 100 are 200 and are 160 and 240 when rounded to the nearest 10

Explain example 2: Ben could have as little as $\pounds150$ and Helen as much as $\pounds154$

<u>Place value – Roman Numerals</u> True or false? example 1: IV and XII are the true examples

True or false? example 2: XL is the only true example

Answers

Place value – Roman Numerals (continued)

Order: Here, the smaller the number the greater the number of digits

Estimate: Note that there is no symbol for zero in Roman Numerals as it is an additive number system

<u>Addition</u>

Missing digits example 1: 88+44=132

Missing digits example 2: 193+156=349

Missing digits example 3: 739+346=1085

How many ways? example 1: Three ways (78+28=106, 88+28=116, 98+28=126)

How many ways? example 2: Four ways (937+64=1001, 937+74=1011, 937+84=1021, 937+94=1031)

Investigate: Example answers 479+81=560, 759+64=823

Subtraction Missing digits example 1: 30-12=18

Missing digits example 2: 121-22=99

How many ways? 3 ways (75-59=16, 85-59=26, 95-59=36) Note: four ways if you include 65-59=06

Missing digits example 3: 346-152=194

How many ways? example 1: Two ways (61-7=54, 60-7=53)

How many ways? example 2: Four ways (80-17=63, 80-13=67, 90-23=67, 90-27=63)

Addition and subtraction How many ways? example 1: Six ways (1&6, 2&5, 3&4, 4&3, 5&2, 6&1) How many ways? example 2: Six ways (1&1, 1&2, 1&3, 2&1, 2&2, 3&1)

Answers

<u>Multiplication</u>

Missing digits example 1: 45×3=135

Missing digits example 2: 68×5=340 or 78×5=390

Missing digits example 3: 12×8=96

Missing digits example 4: 241×4=964 or 246×4

How many ways? Four ways (225×5=1125, 425×5=2125, 625×5=3125, 825×5=4125)

Explore: Multiple of 5 and multiple of 3.

Division

Explain: both correct – sharing and grouping strategies used

Explore (Venn diagram example 1): Divides by 3 is 18; both is 24; divides by 4 is 16 and 20; 14 is on the outside.

Investigate: 100 can be divided by 9 whole numbers without leaving a remainder (1,2,4,5,10,20,25,50,100) whereas 60 can be divided by 12 numbers (1,2,3,4,5,6,10,12,15,20,30,60). Children can consider the consequent benefits of a base-60 time system.

How many ways? 3 ways (34÷2=17, 54÷3=18, 84÷7=12) Note: excludes solutions with 1-digit answer e.g. 14÷2=07

Multiplication and division

Different ways example 1: 8 and 9, also appropriate decimals.

Different ways example 2: Whole numbers in the range $34 \rightarrow 39$, also appropriate decimals.

Which answer? example 1: 2

How many ways? example 1: four ways (4×8=40-8, 3×8=40-16, 2×8=40-24, 1×8=40-32)

Answers

<u>Multiplication and division (continued)</u> How many ways? example 2: Five ways (numbers $1 \rightarrow 5$)

How many ways? example 3: Four ways (60÷1=4×15, 60÷3=4×5, 60÷5=4×3, 60÷15=4×1)

How many ways? example 4: Sixteen ways (4×3=12, 3×4=12, 12=4×3, 12=3×4, 4×12=48, 12×4=48, 48=12×4, 48=4×12, 12÷4=3, 12÷3=4, 4=12÷3, 3=12÷4, 48÷12=4, 48÷4=12, 12=48÷4, 4=48÷12)

Which picture? example 1: Red bar model (4 people in total)

Which picture? example 2: Cherries=blue, pizzas=grey, sweets=red

Which picture? example 3: Grey picture represents four 7-day weeks

Which answer? example 2: 24

Fill the gaps: 18 egg cups fill a bottle; 6 glasses fill a jug; 36 egg cups fill a jug.

Fractions

Two ways: $\frac{1}{2} + \frac{1}{4}$; $\frac{1}{4} + \frac{2}{4}$

How many ways? example 1: Three ways $(\frac{6}{7} - \frac{1}{7} = \frac{3}{7} + \frac{2}{7}; \frac{6}{7} - \frac{2}{7} = \frac{2}{7} + \frac{2}{7}; \frac{6}{7} - \frac{2}{7} = \frac{2}{7} + \frac{2}{7}; \frac{6}{7} - \frac{3}{7} = \frac{1}{7} + \frac{2}{7})$

How many ways? example 2: Three ways $(\frac{7}{10} - \frac{1}{10} > \frac{1}{10} + \frac{3}{10}; \frac{7}{10} - \frac{1}{10} > \frac{2}{10} + \frac{3}{10}; \frac{7}{10} - \frac{2}{10} > \frac{1}{10} + \frac{3}{10})$

Decimals

Is it the same? 0.24 can be made with a 0.1 and fourteen 0.01s

Two ways: Decimals with the smallest possible difference 0.5 and 0.28. Decimals with the largest possible difference 0.2 and 0.85

ANSWERS

Answers

<u>Measures</u>

Explore: Metric measures – kilograms; both – metres; measures of length – inches; outside – stones

Measures - money

Explain example 1: This gives £5 change, which may save the shopkeeper from having to find change using coins

How many ways? 3 ways (50p and four 5ps; three 20ps and two 5ps; two 20ps and three 10ps)

Different answers: How many ways? 4 possible answers (38p, 39p, 48p, 49p)

Which picture? example 1: Blue bar model

Which picture? example 2: Green bar model

Explain example 2: cheaper than

Measures - time

Estimate: The times can be approximated based on the position of the hour hand. The bottom-right clock shows the minute hand: three-quarters past an unknown hour.

Measures – area and perimeter

Explore example 1: A 12×2 rectangle has a larger perimeter; a 6×4 rectangle has a smaller perimeter. The thinner the rectangle, the larger the perimeter.

Explore example 2: A 5×5 square has a perimeter of 20cm and an area of 25cm²; a 9×1 rectangle has a perimeter of 20cm and an area of 9cm². The children may also explore non-rectangular shapes.

Answers

Geometry - shape

Explore example 1: Quadrilaterals (left), 1+ right-angle (right)

Explore example 2: Has an obtuse angle

Explore example 3: An example top question is 'Does it have a right angle?', many possible questions for bottom boxes

Statistics

Explain example 1: Tally charts are used to record a count over time (e.g. animals in the nature area in a day); numbers record a data set recorded instantly (e.g. number of boys/girls in a class).

Mark the work: 1st example: scale based on the number of people in the survey rather than the largest amount. 2nd example: line graph inappropriate for discrete data (no meaning to intermediate readings). 3rd example: y axis is not labelled.

Which graph: Data recorded over time is presented as a line graph as intermediate points having meaning (sunflower & temperature). School clubs could be bar graph (numbers at clubs in one week) or line graph (attendance at each club over the course of the year).

Read the graph: Examples: the KS1 clubs are most popular, music clubs are well attended, there are more sports clubs than any other type of club.

Explain example 2: There was a significant increase in the number of children reading every night, but still the same number of children reading between 0-2 times per week.

ANSWERS

Answers

Statistics (continued)

Explore: 10 children in the football cage, 7 children on the playground, 5 children in the forest.

Read the graphs:

I SEE MATHS RESOURCES

A range of resources for developing deep, visual mathematics can be found at <u>www.iseemaths.com</u>

<u>I See Reasoning – UKS2</u> provides a range of thoughtprovoking tasks and questions for children in Year 5&6.

Maths Outside the Box is a compilation of 15 varied, thought-provoking mathematical investigations. The tasks are ideal for enriching mathematics for highattaining children in year 4.

iPad app Logic Squares, ideal for children in LKS2, gets children applying calculation facts and thinking strategically. Numbers have to be positioned to complete the crossword-style number sentences.

iPad apps <u>|See + -</u> and <u>|See $\times \div$ </u> allow teachers to create a range of visual representations.

Information about conferences and in-school training led by Gareth Metcalfe can be found at <u>www.iseemaths.com</u>