There must be another way!

I've never noticed that before!

It's possible if...
What's different about... pattern...

by GARETH METCALFE

Instant digital download in PDF format

I SEE REASONING - LKS2

Contents

Introduction

Place value
Place value - negative numbers
Place value - rounding
Place value - Roman Numerals
Addition
Subtraction
Addition and subtraction
Multiplication
Division
Multiplication and division
Fractions
Decimals
Measures
Measures - money
Measures - time
Measures - area and perimeter
Geometry - shape
Geometry - coordinates
Statistics
Answers
I See Maths Resources

I SEE REASONING - LKS2

Tasks for enriching mathematical talk Introduction

I See Reasoning - LKS2 is written to provide rich, open contexts for mathematical discussion and enquiry.

Children build on their current understanding when solving 'I know... so...' questions. Concepts are represented visually in 'Read the picture' tasks. Friends work systematically to find all possible solutions for the 'How many ways?' challenges.

The resource is comprised of 240 varied tasks, linked to all different areas of the lower KS2 mathematics curriculum. These activities correspond to US grades 2-3 and Australian years $3-4$. Screenshots of tasks can be used within presentations or printed and given to children.

I hope that I See Reasoning enriches the maths learning in your classroom!

Gareth Metcalfe www.iseemaths.com

For use by the purchasing institution only. Copyright I See Maths Itd. Circulation is prohibited.

True or false?

True or false?

Which picture?

Draw lines to match the two pictures to the correct number of cubes.

How many?

Which answer?

Which number is 10 more than 396 ?
(a) 496
(b) $386 \quad$ Explain your choice (c) 406

Which answer?

Ten more than a number is 2696 .
What is the number?
(a) 2706

Explain your choice
(b) 2686

Different ways

To turn $\mathbf{1 8 0}$ into $\mathbf{2 1 0}$ you can...
add ___ tens
OR add ones

OR add ___ tens and ___ ones
OR add ___ hundred and subtract \qquad tens

Different ways
To turn $\mathbf{2 9 4 0}$ into $\mathbf{3 0 0 0}$ you can...
add ___ tens

OR add
___ ones
OR add \qquad tens and \qquad
OR add \qquad hundred and subtract tens

How many ways?

You have a pile of 100 coins and a pile of 10 coins. Make 230

100

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

You have a pile of 1000 coins and a pile of 100 coins.

Make 4100

1000

100

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Number lines
Show the position of $\mathbf{3 2 8}$ on each number line.

Number lines
Show the position of $\mathbf{7 0 6 3}$ on each number line.

Different ways
What could the start and end numbers be?
63

Different ways
What could the start and end numbers be?
250

Different ways
What could the start and end numbers be?
137

Different ways

Make different 3-digit numbers using the digits 1, 2 and 4. Position your numbers accurately on the number line below:

Different ways
Make different 3-digit numbers 8 using the digits 0,5 and 8 . Position your numbers accurately on the number line below:

Explore

Using the digits 3,0 and 8 make the number that is closest to 600.

You can use each digit only once.

Investigate

Using the digits $0,1,2,3$ and 4 make a 3-digit number and a 2-digit number.

Make the difference between the two numbers as small as possible.

You can use each digit only once.

$$
3
$$

Investigate

Make a 3-digit number.
Each digit must be different.
Make another 3-digit number.
Use the same digits.

Make the difference between the numbers as large as possible.

Example

The difference between 257 and 725 is 468 .

Explain

Put the following in order from fewest to most:
A - seconds to get changed for P.E.
B - countries in the world
C - children in your school
D - days until Christmas

MSEITS

How many ways?

Put exactly 10 counters on a hundreds, tens, units mat to make a number.

The difference between your number and 500 must be less than 150.
Your number must be odd.

Example	Hundreds	Tens	Ones
This is 145 , made with 10 counters	\bullet	$\bullet \bullet$	$\bullet \bullet-0$

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are
Missing digits
Fill in the missing digits.
$3 \square+\square 6=\square \square 6$
Find different ways.

Spot the pattern
5 less than 10 is 5
5 less than 7 is
5 less than 4 is
5 less than 1 is

I know... so...
The difference between -2 and $\mathbf{5}$ is $\mathbf{7}$
The difference between - $\mathbf{2}$ and $\mathbf{4}$ is

The difference between - $\mathbf{3}$ and $\mathbf{4}$ is
The difference between - $\mathbf{3}$ and \qquad is 9

I know... so...
The difference between -5 and $\mathbf{3}$ is $\mathbf{8}$
The difference between - and $\mathbf{3}$ is $\mathbf{6}$
The difference between - and $\mathbf{3}$ is

Draw

Draw an arrow to show the position of each number.

$$
8,-6,-12,15
$$

$\mathbf{1}$	$\mathbf{1}$	10	0	10
-20	-10	0	20	

Estimate

Estimate the value of the hidden numbers.

Different ways
The difference between a number and -2 is 5 .
What could the number be?
There are two possible answers!

MSEF

Different ways

The first negative number in the sequence is -3 . 0 is not in the sequence.
At least the first three numbers in the sequence are positive.
Write the first three numbers in the sequence. There are different ways this can be done!

Example:

$10,7,4 \ldots$
These are the first three numbers in a sequence. There will not be a 0 in this sequence.
-2 is the first negative number in this sequence.

Explain the mistakes

What is $\mathbf{2 4 5}$ rounded to the nearest 10?

Mistake 1:50
Mistake 2: 240 Mistake 3: 200

I know... SO...
678 rounded to the nearest \qquad 678 rounded to the nearest 100 is \qquad 295 rounded to the nearest 10 is \qquad 295 rounded to the nearest 100 is \qquad

Which answer?

What is the largest whole number that, when rounded to the nearest 10 , is 150 ?
(a) 149
(b) 154
(c) 155

How many ways?

Rounded to the nearest 10, my number is 250 . Rounded to the nearest 100, my number is 300 .

My number is odd.
What could my number be?
Level 1: I can find one possible answer
Level 2: I can find different possible answers
Level 3: I know how many possible answers there are

Explain
163 and 238 round to the same 100. 163 and 238 round to a different 10.
Explain why.

Fill the gaps

Number	$\mathbf{6 7 4}$	$\mathbf{1 5 3}$		
Rounded to nearest to	670		350	450
Rounded to nearest to0	700		400	400

Explain

Rounded to the nearest $£ 100$, Ben has £200. Rounded to the nearest £10, Helen has $£ 150$. Helen has more money than Ben.

Explain how this is possible.

Race to 500
 A 2-4 player game

You will be given a start number. Take turns to roll a dice. On your go, change your number in this way:

Roll a 1 : plus or minus 1 from your number Roll a 2: plus or minus 10 from your number Roll a 3: plus or minus 100 from your number Roll a 4: round your number to the nearest 10 Roll a 5: round your number to the nearest 100 Roll a 6: free choice from the options above The first player to get to 500 wins!

Start numbers: 258, 310, 648, 686, 295, 382, 373, 701, 696, 718, 284, 728

True or false?

$$
I V=15
$$

XIX = 21

$$
I V=4 \quad X I I=12
$$

True or false?

$$
\mathrm{XL}=60
$$

CII $=100$

$$
X X V=115
$$

$$
\mathrm{XL}=40
$$

Order
Order the numbers from smallest to largest.
VIII
C

XX
XVI
What do you notice?

Spot the pattern

22 in Roman Numerals is written XXII
32 in Roman Numerals is written \qquad 42 in Roman Numerals is written \qquad in Roman Numerals is written LII

Rank by difficulty

Write these numbers in Roman Numerals:

44
 33

51

Always, sometimes or never?

'In Roman Numerals, bigger numbers have more symbols than smaller numbers.'

Estimate

Estimate the value of the missing numbers. Complete using Roman Numerals.

Explain

Here are some examples of numbers written in Roman Numerals:
$1=\mathrm{I}$
3 = III
4 = IV
$5=\mathrm{V}$
8 = VIII
9 = IX
$10=X$
13 = XIII
14 = XIV
$50=\mathrm{L}$
$80=$ LXXX
$40=$ XL
$100=C$
103 = CIII
104 = CIV

Explain why we don't still use Roman Numerals.

Rank by difficulty

$49+48$
$56+42$

$$
73+49
$$

Rank by difficulty
$247+65$
$364+235$
$273+98$

Mental or written?

$$
34+25+22
$$

$82+39$

$83+82$

$$
55+27+15
$$

Mental or written?

$$
1062+1251
$$

$375+125$
$534+399$
4085 + 46

Explain the mistakes

$24+37$

Mistake 2

Mistake 3

$$
24+37=511
$$

Gold, silver, bronze
Here are three ways of calculating $\mathbf{3 6 + 2 9 + 1 4}$

Method 2
$36+30=66$
$66-1=65$
$65+14=79$

Method 3
$36+14=50$
$50+29=79$

Rank each method as gold, silver or bronze.

Gold, silver, bronze Here are three ways of calculating 228 + 194

Method 2

Method 3
 $+194$ 4

Rank each method as gold, silver or bronze.
Missing digits

> | | $8 \square$ |
| ---: | :--- |
| $+\square 4$ | | Fill in the missing digits.

Missing digits

Fill in the missing digits.

Missing digits

How many ways?

How many ways?

Fill in the missing digits.
Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Investigate
Stage 1: complete using digits 0-9 (use each digit no more than once)

Stage 2: complete using digits 0-9 (use each digit no more than once) and with the digit 9 in this position:

Rank by difficulty
137-56
163-59
187-56

Rank by difficulty

$$
50-19
$$

139-19
101-19

Rank by difficulty
2000-60
3003-1996

$$
2645-1082
$$

Is it the same?
63 take away 63 take away 20,
20, add 2 take away 2
Is 63-18 the same as...
$2+43$
65-20

I know... so...
$200-\ldots=128$
$200-70=130$
$2000-70=$
know... so...
$326-191=$
$326-187=139$
$328-189=$

Spot the pattern
What do you notice?

Gold, silver, bronze

Here are three ways of calculating 405-297

Method 1

$$
\begin{aligned}
& 405-297 \\
& +3-+3 \\
& 408-300=108
\end{aligned}
$$

Method 3

Rank each method as gold, silver or bronze.
Explain the mistakes
Mistake 1
$200-7=103$
Mistake 2
$£ 10-£ 8.90=£ 2.10$
Mistake 3

$$
100-47=63
$$

Explain the mistakes
628-56
Mistake 1
Mistake 2
Mistake 3

628
 - 56
 632

${ }^{5} \not{ }^{5} 28$
-56
068
${ }^{5} \not{ }^{\prime}{ }^{\prime} 28$

- 56
582

Missing digits
Fill in the missing digits.
उप- प2 $=\square 8$

Missing digits
Fill in the missing digits.
$\square 2 \square-\square 2=99$

How many ways?

Fill in the missing digits.
Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways
there are

Missing digits

Fill in the missing digits.

How many ways?

Complete using digit cards 0-9. Position the digits 6 and 7 as shown:

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

Complete using digit cards 0-9. Position the digits 0 and 6 as shown:

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

I know... so...
$437+285=722$
722 -___ $=287$
$-\quad-435=285$
I know... so...
$603-194=$
$600-200=400$

$$
-401=199
$$

Broken calculator

'The 9 and 5 keys on my calculator are broken!' How can I use it to work out:

$$
\begin{gathered}
98+95 \\
182-90 \\
65+55
\end{gathered}
$$

Which picture?
Draw lines to match the question to the correct bar model

Ava buys a t-shirt and a
, pair of jeans.
I How much change
does she get from $£ 50$?

Jen has £40. She wants
I to buy a t-shirt and a pair of jeans. How much more money does she need?

Fill the gaps
 Fill in each of the blank boxes.

MENU
 Sandwich: £2.40 Drink: 75p
 Fruit: 40p

Write a question here that matches the bar model picture

Which answer?
$13+9=\square+10$
What is the missing number?
(a) 12
(b) 32 Explain how you know.
(c) 22

Which answer?
$23+16=\square-6$
What is the missing number?
(a) 39
(b) 33 Explain how you know.
(c) 45

How many ways?

The missing numbers are positive whole numbers.
$25+\square=32-\square$
Fill in the missing numbers.
Level I: I can find a way
Level 2: I can find different ways
Level 3 : I know how many ways there are

How many ways?

The missing numbers are positive whole numbers.

$18-\square>\square+13$

Fill in the missing numbers.
Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Which number sentence?
Write a multiplication number sentence for each example. One has been done for you.

0000
$3 \times 4=12$

$5+5+5+5+5+5$

I know... so...

$$
\begin{array}{ll}
7 \times 4= \\
8 \times 4=32 & \\
8 \times 5= & \ddots \bullet 日 \bullet \bullet \bullet \bullet \bullet
\end{array}
$$

Which number sentence?
Write a multiplication number sentence for each example. One has been done for you.

$6+12+12$
$6 \times 5=30$

I know... so...
$6 \times \ldots=48$
$6 \times 6=36$

36					
6	6	6	6	6	6

$12 \times 6=$

The same as...
7×4 is the same as:

$\underline{4} \times \underline{4}+\underline{3} \times \underline{4} \quad \underline{5} \times \underline{4}+\underline{2} \times \underline{4}$

$\underline{7} \times 2+2 \times 2$
6×5 is the same as:

$_^{+}+\ldots$

- $^{\times}{ }^{+}{ }^{+}{ }^{\times}$_
_ $^{\times}{ }^{+}{ }^{\times}$_

I know... so...
$18 \times 7=$
$16 \times 7=112$
$8 \times 14=$

Read the picture

How many dots?

Which number sentence(s) do you see?
Read the picture How many dots?

Which number sentence(s) do you see?

Draw

This picture shows 24 dots using dice patterns.

Draw

This picture shows 60 dots using dice patterns.

Draw a different picture of 60 dots using dice patterns.

Is it the same?
half 9×10

Is 9×5 the same as...
$9+9+27 \quad 3 \times 3 \times 5$

Is it the same?

$$
10 \times 2 \times 8
$$

$$
24 \times 4
$$

Is 12×8 the same as...
$12 \times 4 \times 4$
$4 \times 3 \times 8$

Matching number sentences

+ number sentence	\times number sentence
$6+6+12$	6×4
$8+8+8+8+8$	$3 \times 2 \times 2$
$15+10+5$	

Rank by difficulty

$$
15 \times 6
$$

23×3

$$
18 \times 5
$$

Explain the mistakes

34×6

Method 1

Method 3

	3	4
6	18	24

Method 2

$$
\begin{aligned}
& 11 \\
& 180
\end{aligned}
$$

$$
+24
$$

$$
\begin{array}{r}
6 \\
\hline 210 \\
\hline
\end{array}
$$

Which one's correct?
Find the correct calculation. Spot the mistakes.
326×7

$$
\begin{array}{r}
326 \\
\times 7 \\
\hline 142 \\
\hline 14
\end{array} \quad \begin{array}{r}
326 \\
\times 7
\end{array} \quad \begin{array}{r}
326 \\
\times 74 \\
\hline 14
\end{array} \quad \frac{2282}{14}
$$

Missing digits
Fill in the missing digits.
$4 \square \times 3=1 \square 5$

Missing digits

Fill in the missing digits.

Missing digits

$\times 8$ Fill in the missing digits.

Missing digits
$24 \square$
$\times \square \quad$ Fill in the missing digits.

How many ways?

Fill in the missing digits.
Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Explore
Complete the headings of the Venn diagram:

Add a different number in each section.

Explore
There are 3 squares and 2 left over.

Rearrange the same number of matchsticks.
There are \square triangles and \square left over.
There are 2 \ldots and 4 left over.

Explore

There are 6 triangles and left over.

Rearrange the same number of matchsticks.
There are \square squares and \square left over.
There are 3

Explain

3 on each dice
4 dice
12 dots in total
4 on each dice
\square dice

28 dots in total

Explain

3 rows
5 columns
15 dots in total

4 rows

columns
 24 dots in total

Different ways $\because \because$
$\because:$
$\because \%$
$\because \%$

17 circles
2 columns
8 rows
1 left over
1 left over

2 left over

I know... so...
$24 \div 6=4 \circ 0 \quad$ How many 6 s in 24? There are 4.
$30 \div 6=$ So...

$$
\div 6=6
$$

Different ways $\begin{array}{lll}\because \because O \\ \because O & 26 & \text { circles } \\ \because \because O & \text { columns } \\ \because \because O & 8 \text { rows } \\ \because \because O & 2 \text { left over }\end{array}$

1 left over

I know... so...

$$
\div 8=4
$$

$$
40 \div 8=5 \cdot 00 \mathcal{C}
$$

How many 8s in 40?
There are 5.
So...
$56 \div 8=$

MA SHE

True or false?

$6 \div 4=24$

$$
24 \div 6=4
$$

$$
4 \div 24=6
$$

$$
240 \div 4=60
$$

$30 \div 6$

I agree with Joy

I agree with Fred
I agree with both Explain:

Rank by difficulty
$60 \div 4$

$$
32 \div 4
$$

$$
14 \div 4
$$

Rank by difficulty

$$
120 \div 6
$$

$32 \div 6$
$78 \div 6$
Is it the same?

$$
80 \div 10 \quad 160 \div 10 \times 2
$$

Is $160 \div 5$ the same as...
$160 \div 2 \div 2 \div 1$
$160 \times 10 \div 2$

Different methods
What's the best way to answer each question?
$80 \div 10$ $80 \div 4$
$80 \div 1$
$80 \div 40$
$80 \div 5$

Different methods

What's the best way to answer each question?

$600 \div 1$ $600 \div 10$

$600 \div 7$
$600 \div 200$
$600 \div 4$

Which one's correct?
Find the correct calculation. Spot the mistakes. $84 \div 3$

Which one's correct?

Find the correct calculation. Spot the mistakes. $625 \div 5$

Explore

Put these numbers in the correct section of the Venn diagram:

$$
\begin{array}{lllll}
16 & 20 & 14 & 24 & 18
\end{array}
$$

Add another number to each section.

Explore

Put a number in each section of the Venn diagram:

Investigate

There is a positive whole number in each box.
$100 \div \square=\square$
$60 \div \square=\square$

Which number sentence can be completed in more ways?

How many ways?

Complete using digits 0-9. Position the digit 4 as shown.

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Different ways

Each jump on the number line is the same.

What number could be in

 the blue box?more than 30
less than 40

Different ways

Each jump on the number line is the same.
 the blue box?
more than 100
less than 120

Explain the mistakes

Mistake 1
$3.5 \times 10=3.50$

Mistake 2

$$
35 \times 100=350
$$

Mistake 3
$35 \div 10=0.35$

Mistake 4
$350 \div 10=3500$

Which answer?
$6 \times \square=24 \div 2$
What is the missing number?
(a) 2
(b) 4
(c) 8

How many ways?

The missing numbers are positive whole numbers.

$$
\square \times 8=40-\square
$$

Fill in the missing numbers.

Level I: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

The missing number is a positive whole number.

$$
24 \div \square>4
$$

Fill in the missing number.
Level I: I can find a way
Level 2: I can find different ways
Level 3 : I know how many ways there are

How many ways?

The missing numbers are positive whole numbers.

$$
60 \div \square=4 \times \square
$$

Fill in the missing numbers.
Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

You have these cards. One card is upside down.

How many number sentences can you make?
The red card can be any number.

> Tip: put the = sign in different positions in your number sentences

Which picture?

Tim and three friends get the train.
The total cost is £24.
How much does each person pay?

Which bar model represents the question correctly?
Which picture?
Draw lines to match the questions to the bar models:

4 friends share 8 cherries. How many cherries each?

4 pizzas shared by 8 friends. How much pizza each?

4 friends each have 8 sweets. How many in total?

Which picture?

When it's not a leap year there are four weeks in February. How many days in February on a non-leap year?

Which bar model represents the question correctly?

Which answer?

Mr Jackson has two pairs of trousers, three different ties and four shirts. How many different outfits can he wear?

> (a) 14
> (b) 9
> (c) 24

Fill the gaps

3 glasses fill a bottle

2 bottles fill a jug

6 egg cups fill a glass

___ egg cups fill a bottle
___ glasses fill a jug
___ egg cups fill a jug
___ jugs fill ___ egg cups

Read the pictures
Which shapes are one-third blue?

Read the pictures
Which shapes are three-quarters blue?

Read the picture
What fraction of the shape is red?
What fraction of the shape is blue?

red $=$
blue =

Draw
Shade in $\frac{1}{4}$ of each shape:

Explain

 What fraction of the shape is blue?

Kam

Jack $\frac{3}{4}$ as 3 out of 4 Explain:

Explain the mistake

One-half is equivalent +2 to how many quarters?

Read the pictures

What fraction of each picture is blue?

finish the drawing

Spot the patterns

Complete the sequences:

$$
1 \frac{1}{4}, \square, 1 \frac{3}{4}, \square
$$

Read the pictures
Complete the missing parts in the bar models:

Draw
Show the position of 1 on each number line:

Read the pictures

Different ways
Which fractions could be at either end of the number line?
$\frac{5}{10}$

Draw

Position the age of each child on the number line.
Francis: 18 months old Amy: $\frac{1}{5}$ year old

Zoe: $1 \frac{3}{4}$ years old

Cruz: 15 months old

Explain $\quad \frac{1}{5}$ of 15

I agree with Nia

I agree with Fern

Explain:

Which method?

Which bar model represents the question correctly?

Which picture?
Match the question to the bar model. Use the bar models to answer the questions.

$$
\frac{1}{4} \text { of } 8=\square
$$

$$
\frac{1}{4} \text { of } \square=8
$$

Which picture?
Match the question to the bar model.
Use the bar models to answer the questions.

$$
\frac{3}{5} \text { of } \square=60
$$

$$
\frac{3}{5} \text { of } 60=\square
$$

I know... so...
$\frac{1}{10}$ of $40=$
$\frac{3}{10}$ of $40=12$

$\frac{3}{10}$ of $80=$

I know... so...

$$
\begin{aligned}
& \frac{\square}{4} \text { of } 80=20 \\
& \frac{3}{4} \text { of } 80=60 \\
& \frac{3}{4} \text { of } \square=120
\end{aligned}
$$

3 ways
Complete in 3 different ways:

$$
\frac{1}{4} \text { of } \square=\frac{1}{2} \text { of } \square \quad \text { What do you notice? }
$$

3 ways
Complete in 3 different ways:

$$
\frac{1}{2} \text { of } \square=\frac{1}{10} \text { of } \square \quad \text { What do you notice? }
$$

Different ways
Fill in the gaps. Find different ways.

$\frac{1}{\square}$ of $\square=4 \quad \frac{1}{\square}$ of $\square=4$

Different ways

Fill in the gaps. Find different ways.

Which way? $\frac{3}{6}+\frac{2}{6}$

Rank by difficulty

$$
\frac{4}{5}+\frac{1}{5}
$$

$\frac{3}{4}+\frac{3}{4}$

$$
\frac{3}{7}+\frac{2}{7}
$$

$$
\frac{1}{2}+\frac{2}{4}
$$

Fill the gaps

$$
\begin{gathered}
\frac{3}{8} \square \frac{2}{8}=\frac{5}{8} \\
\frac{3}{8}-\frac{2}{\square}=\frac{\square}{8}+\frac{\square}{8}=1
\end{gathered}
$$

Two ways
Fill in the gaps. Do in two different ways.

$$
\frac{1}{\square}+\frac{\square}{4}=\frac{3}{4}
$$

How many ways?

Fill in the missing numbers:

$$
\frac{6}{7}-\frac{\square}{7}=\frac{\square}{7}+\frac{2}{7}
$$

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

Fill in the missing numbers:

$$
\frac{7}{10}-\frac{\square}{10}>\frac{\square}{10}+\frac{3}{10}
$$

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Explain the mistakes

Mistake 1
 $42 \div 10=420$
 $$
\begin{gathered} \text { Mistake 2 } \\ 42 \div 10=0.42 \end{gathered}
$$

 Mistake 2

 Mistake 2}
Mistake 3

Missing numbers
Fill in the gaps using the numbers.
$4 \div \square=\frac{4}{10}$
$4 \div \square=1$
$4 \div \square=4$
Note: one number is
$4 \div \square=0.4$
used twice

Missing numbers
Fill in the gaps using the numbers.

True or false?

Which fraction(s) have been positioned correctly?

Which picture?
Which picture shows the correct position of $\frac{1}{4}$?

I know... so...
$\frac{3}{4}$ of $100=75$
$\frac{3}{4}$ of $10=$
$\frac{3}{4}$ of $1=$

Agree or disagree?

320 is more than 90 because it has more digits.

Is it the same?
Is 0.24 the same as...
Two 0.1 coins and four 0.01 coins?
240.1 coins?

Are there any
other ways?
240.01 coins?

Different ways
What could the missing numbers be?

0.25

Two ways
Complete the decimals using the digits 2,5 and 8 . Position the decimals on the number lines.
$0 . \square$
0. \square -

8

Method 1 - small difference between decimals:

Method 2 - large difference between decimals:

Explain

Circle the unit(s) of measure that may be used to measure each item:

The classroom bin $\rightarrow \mathbf{m m ~ c m ~} \mathbf{m ~ k g ~ m l}$ litres
A letter $\rightarrow \mathrm{mm} \mathrm{cm} \mathrm{m} \mathrm{g} \mathrm{kg} \mathrm{ml}$
A bath $\rightarrow \mathbf{m m ~ c m ~} \mathbf{m} \mathbf{k g}$ litres

True or false?

$8 \mathrm{~cm}=\underline{80} \mathrm{~mm}$

$$
60 \mathrm{~mm}=\underline{600} \mathrm{~cm}
$$

$500 \mathrm{~m}=5 \mathrm{~km}$
$30 \mathrm{~cm}=3 \mathrm{~m}$
$30 \mathrm{~cm}=\underline{300} \mathrm{~mm}$

Which answer?
$35 \mathrm{~cm}+60 \mathrm{~mm}=\ldots \quad \mathrm{cm}$
(a) 95 cm
(b) 635 cm
(c) 41 cm

Rank by difficulty

$$
4 \mathrm{~km}=\ldots \quad \text { metres }
$$

$$
4 \mathrm{~mm}=\ldots \mathrm{cm}
$$

$$
4 \text { minutes }=\ldots \text { seconds }
$$

Explain

Order these lengths from shortest to longest:
$750 \mathrm{~mm} \quad 160 \mathrm{~cm} \quad 0.9 \mathrm{~m}$ your height

Explore

Write these measures in the correct section of the Venn diagram:
inches metres stones kilograms

Add some more units of measure

Which answer?
£10-£7.90
(a) $£ 2.10$
(b) $£ 3.1$
(c) $£ 3.10$

Which answer?
I spend $£ 16.99$ at the shop. I pay with a $£ 20$ note. How much change am I given?
(a) $£ 4$ and 1 p
(b) $£ 3.01$
(c) $£ 3.1$

Explain

Sometimes when I am paying for something that costs £6 I pay with a $£ 10$ and a $£ 1$ coin.
Why might I do this?

How many ways?

I spend 70p at the shop.
I pay with exactly 5 coins.

Which coins do I use?

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Different answers

I have less than 50p.
You need at least 5 coins to make this amount of money. How much money do I have?

Level I: I can find a possible amount Level 2: I can find different possible amounts Level 3: I have found all the possible amounts

Which picture?
I pay for four packs of stickers with a $£ 5$ note.
I get £ 1.80 change.
What is the cost of a pack of stickers?
Which bar model represents the question correctly?

OR

Work out the cost of a pack of stickers.

MASH

Which picture?

Cost for swimming: $£ 3.20$ - adult $£ 1.10$ - child Two adults and three children go swimming.
Lisa pays with a $£ 10$ note.
How much change is Lisa given?
Which bar model represents the question correctly?

OR

$£ 10$				
$£ 3.20$	$£ 3.20$	$£ 1.10$	$£ 1.10$	$£ 1.10$

Explain

Fill in the missing word(s).
An apple is more expensive than a banana.
An apple is cheaper than an orange.
A banana is
than an orange.

Which answer?

20 minutes ago it was 7:45pm.
What is the time now?
(a) $8: 05 \mathrm{pm}$
(b) $7: 25 \mathrm{pm}$
(c) $7: 65 \mathrm{pm}$
know... so...
$2 \frac{1}{2}$ hours after 10:15pm the time is $\mathbf{1 2 : 4 5 p m}$
$2 \frac{1}{2}$ hours after 10:30pm the time is
$2 \frac{1}{2}$ hours after 10:45pm the time is

Order
Order these times from shortest to longest:
20 minutes 600 seconds $\frac{1}{4}$ hour

Order
Order these times from shortest to longest:
3 weeks 13 days 240 hours $\frac{1}{2}$ month

Estimate

There is a hand missing from each clock.
For each clock, what time could it be?

Explain

Order the amount of time you have spent:
Brushing your teeth in the last two weeks
Eating yesterday
Exercising in the last 3 days

Explain

Which shape is bigger?

Estimate

Estimate the perimeter:

5cm

Estimate

Estimate the perimeter:

8cm

Explain

Order these shapes from the smallest to the largest perimeter without measuring them.

Explain

More blue or red?

Read the pictures

Tim's shape

Ben's shape

Tim's shape has a ___ area than
Ben's shape.
Tim's shape has a \qquad perimeter than Ben's shape.

Read the pictures
Beth's shape

Zara's shape

Beth's shape has a area than Zara's shape.

Beth's shape has a
 than Zara's shape.

True or false?

Perimeter $=\underline{10 \mathrm{~cm}}$
Perimeter $=\underline{18 \mathrm{~cm}}$

I know... so...

perimeter $=40 \mathrm{~cm}$

Explore

This rectangle has an area of 24 squares:

Make other rectangles with areas of 24 squares.
Make a rectangle with a larger perimeter.
Make a rectangle with a smaller perimeter.

Explore

You will need squares with a side length of 1 cm .
Using your squares, make shapes with a perimeter of 20 cm and different areas.

Which type of shapes have a larger area?

Odd one out

Odd one out

Agree or disagree?

The blue line is vertical

The blue line and the red line are parallel as they never meet

Agree or disagree?

The green line is horizontal

The lines are parallel

Explore
Write the headings for the Venn diagram

Add other shapes to the diagram

Explore

Write the missing heading for the Venn diagram. Add shapes to each section.

Triangles

Explain

What's the same? What's different?

Is it correct?

Are the lines of symmetry correct?

Explore

Write the questions in the branching database:

Order
Order the angles from smallest to largest:

Order
Order the marked angles from smallest to largest:

Odd one out

cube

square-based pyramid

cuboid

Read the picture

Which shapes can be printed using this square-based pyramid?

Two ways
One more square needs adding to each net to complete the net of a cube.
Complete in two ways.

Explain the mistakes

Mistake 3
Reflect the shape in the mirror line.

Mistake 1

Mistake 2

mirror

mirror

Explain the mistakes Reflect the shape in the mirror line.

mirror

Mistake 2

mirror

Correct way:

mirror

Different ways

Think of possible coordinates for the blue dot.
Could the coordinates of the blue dot be:
$(3,5)$
$(5,3)$
$(10,9)$

Estimate

Estimate the coordinates of the red and green dots.

Draw
Draw a dot to show the approximate position of the coordinate point (6,4):

True or false?

How Children in Class 3A Travel to School

There are 10 children in the class

There are 30 children in the class

Most of the children in the class walk to school

Explain

Grace does a traffic survey to see which types of vehicles drive past school. Here are her results:

Cars: HH HH HH HHt III why did Grace use tally Vans/Lornies: HH III marks to record her results Bikes: HI I rather than numbers?

Motorbikes: II
Other: III

糮

Mark the work

Cake	48
Yogurt	26
Fruit	18
None	8

The table shows the puddings that 100 children ate at school. Mrs Yates asked her class to create a graph using this data. Mark their work: find good things, suggest improvements.

Feedback:

Feedback:

Feedback:

Explain

Percentage of Trains Arriving Late

Which is the best performing train station?

Which graph?

For each example, should the data should be presented as a bar graph or a line graph?

Types of pets owned by children in the class. Height of a sunflower measured over 2 weeks. Today's temperature, measured every hour. Number of children at each after-school club.

Read the graph

Attendance for School Clubs

What does this graph show? Explain.

Explain

In the Autumn term, Darmford Primary School carried out a survey to find out how many days per week children read at home.

In the Spring term,
Darmford Primary School ran a 'Love to Read' scheme to get more children reading at home.

At the end of the term they repeated the survey.

Reading Survey Results, Autumn

How successful was the 'Love to Read' scheme?

Explore

The 22 children in Oak class went out to play.
Most children played on the playground or in the forest.
The number of children playing in the football cage was double the number playing in the forest.

There were 2 more children playing on the playground than playing in the forest.

Complete the bar graph to show where the children were playing.

Where Children Played

Read the graphs
Draw lines to match each heading to the correct graph.

Height above ground of child on slide

Weight of child on slide

Time (seconds)

I SEE REASONING - LKS2

Answers

Place value

How many ways? example 1: Three ways (two 100s and three 10s; one 100 and thirteen 10s; twenty-three 10s)
How many ways? example 2: Five ways (four 1000s and one 100; three 1000s and eleven 100s; two 1000s and twenty-one 100s; one 1000 and thirty-one 100s; forty-one 100s)
Explore: 803
Investigate example 1: 102 and 43 (difference of 59)
Investigate example 2: Greatest possible difference is 792 , made by using the digits 1,9 and any other digit e.g. 941-149 = 792
How many ways? example 3: Nine ways (361, 415, 433, 451, 505, 523, 541, 613, 631)
Missing digits: $30+76=106,30+86=116,30+96=126$
Place value - negative numbers
Different ways example 2: Example solutions 12, 7, 2 or $15,9,3$

Place value - rounding

Which answer? 154
How many ways? Two ways (251 and 253)
Explain example 1: 163 and 238 rounded to the nearest 100 are 200 and are 160 and 240 when rounded to the nearest 10

Explain example 2: Ben could have as little as $£ 150$ and Helen as much as £154

Place value - Roman Numerals
True or false? example 1: IV and XII are the true examples
True or false? example 2: XL is the only true example

I SEE REASONING - LKS2

䀝

Answers

Place value - Roman Numerals (continued)

Order: Here, the smaller the number the greater the number of digits
Estimate: Note that there is no symbol for zero in Roman Numerals as it is an additive number system

Addition

Missing digits example 1: 88+44=132
Missing digits example 2: 193+156=349
Missing digits example 3: 739+346=1085
How many ways? example 1: Three ways ($78+28=106,88+28=116$,
98+28=126)
How many ways? example 2: Four ways (937+64=1001, 937+74=1011, $937+84=1021,937+94=1031$)
Investigate: Example answers $479+81=560,759+64=823$

Subtraction

Missing digits example 1:30-12=18
Missing digits example 2: 121-22=99
How many ways? 3 ways ($75-59=16,85-59=26,95-59=36$)
Note: four ways if you include 65-59=06
Missing digits example 3: 346-152=194
How many ways? example 1: Two ways (61-7=54, 60-7=53)
How many ways? example 2: Four ways ($80-17=63,80-13=67$,
90-23=67, 90-27=63)

Addition and subtraction

How many ways? example 1: Six ways ($1 \& 6,2 \& 5,3 \& 4,4 \& 3,5 \& 2,6 \& 1$)
How many ways? example 2: Six ways (1\&1, 1\&2, 1\&3, 2\&1, 2\&2, 3\&1)

I SEE REASONING - LKS2

Answers

Multiplication

Missing digits example 1: $45 \times 3=135$
Missing digits example 2: $68 \times 5=340$ or $78 \times 5=390$
Missing digits example 3: $12 \times 8=96$
Missing digits example 4: $241 \times 4=964$ or 246×4
How many ways? Four ways ($225 \times 5=1125,425 \times 5=2125,625 \times 5=3125$, $825 \times 5=4125$)
Explore: Multiple of 5 and multiple of 3 .
Division
Explain: both correct - sharing and grouping strategies used
Explore (Venn diagram example 1): Divides by 3 is 18 ; both is 24 ;
divides by 4 is 16 and $20 ; 14$ is on the outside.
Investigate: 100 can be divided by 9 whole numbers without leaving a remainder ($1,2,4,5,10,20,25,50,100$) whereas 60 can be divided by 12 numbers ($1,2,3,4,5,6,10,12,15,20,30,60$). Children can consider the consequent benefits of a base-60 time system.
How many ways? 3 ways ($34 \div 2=17,54 \div 3=18,84 \div 7=12$)
Note: excludes solutions with 1 -digit answer e.g. 14 $\div 2=07$

Multiplication and division

Different ways example 1:8 and 9, also appropriate decimals.
Different ways example 2: Whole numbers in the range $34 \rightarrow 39$, also appropriate decimals.
Which answer? example 1: 2
How many ways? example 1: four ways $(4 \times 8=40-8,3 \times 8=40-16$, $2 \times 8=40-24,1 \times 8=40-32$)

I SEE REASONING - LKS2

Answers

Multiplication and division (continued)
How many ways? example 2: Five ways (numbers $1 \rightarrow 5$)
How many ways? example 3: Four ways ($60 \div 1=4 \times 15,60 \div 3=4 \times 5$,
$60 \div 5=4 \times 3,60 \div 15=4 \times 1$)
How many ways? example 4: Sixteen ways $(4 \times 3=12,3 \times 4=12,12=4 \times 3$, $12=3 \times 4,4 \times 12=48,12 \times 4=48,48=12 \times 4,48=4 \times 12,12 \div 4=3,12 \div 3=4,4=12 \div 3$, $3=12 \div 4,48 \div 12=4,48 \div 4=12,12=48 \div 4,4=48 \div 12$)
Which picture? example 1: Red bar model (4 people in total)
Which picture? example 2: Cherries=blue, pizzas=grey, sweets=red
Which picture? example 3: Grey picture represents four 7-day weeks
Which answer? example 2: 24
Fill the gaps: 18 egg cups fill a bottle; 6 glasses fill a jug; 36 egg cups fill a jug.

Fractions

Two ways: $\frac{1}{2}+\frac{1}{4} ; \frac{1}{4}+\frac{2}{4}$
How many ways? example 1: Three ways $\left(\frac{6}{7}-\frac{1}{7}=\frac{3}{7}+\frac{2}{7} ; \frac{6}{7}-\frac{2}{7}=\frac{2}{7}+\frac{2}{7}\right.$; $\left.\frac{6}{7}-\frac{3}{7}=\frac{1}{7}+\frac{2}{7}\right)$
How many ways? example 2: Three ways $\left(\frac{7}{10}-\frac{1}{10}>\frac{1}{10}+\frac{3}{10}\right.$;
$\left.\frac{7}{10}-\frac{1}{10}>\frac{2}{10}+\frac{3}{10} ; \frac{7}{10}-\frac{2}{10}>\frac{1}{10}+\frac{3}{10}\right)$

Decimals

Is it the same? 0.24 can be made with a 0.1 and fourteen 0.01 s
Two ways: Decimals with the smallest possible difference 0.5 and 0.28 . Decimals with the largest possible difference 0.2 and 0.85

I SEE REASONING - LKS2

Answers

Measures

Explore: Metric measures - kilograms; both - metres; measures of length - inches; outside - stones

Measures - money

Explain example 1: This gives $£ 5$ change, which may save the shopkeeper from having to find change using coins
How many ways? 3 ways (50 p and four 5 ps; three 20ps and two 5ps; two 20ps and three 10ps)
Different answers: How many ways? 4 possible answers (38p, 39p, 48p, 49p)
Which picture? example 1: Blue bar model
Which picture? example 2: Green bar model
Explain example 2: cheaper than

Measures - time

Estimate: The times can be approximated based on the position of the hour hand. The bottom-right clock shows the minute hand: three-quarters past an unknown hour.

Measures - area and perimeter

Explore example 1: A 12×2 rectangle has a larger perimeter; a 6×4 rectangle has a smaller perimeter. The thinner the rectangle, the larger the perimeter.
Explore example 2: A 5×5 square has a perimeter of 20 cm and an area of $25 \mathrm{~cm}^{2}$; a 9×1 rectangle has a perimeter of 20 cm and an area of $9 \mathrm{~cm}^{2}$. The children may also explore non-rectangular shapes.

I SEE REASONING - LKS2

Answers

Geometry - shape

Explore example 1: Quadrilaterals (left), 1+ right-angle (right)
Explore example 2: Has an obtuse angle
Explore example 3: An example top question is 'Does it have a right angle?', many possible questions for bottom boxes
Two ways:

Statistics

Explain example 1: Tally charts are used to record a count over time (e.g. animals in the nature area in a day); numbers record a data set recorded instantly (e.g. number of boys/girls in a class).
Mark the work: $1^{\text {st }}$ example: scale based on the number of people in the survey rather than the largest amount. $2^{\text {nd }}$ example: line graph inappropriate for discrete data (no meaning to intermediate readings). $3^{\text {rd }}$ example: y axis is not labelled.
Which graph: Data recorded over time is presented as a line graph as intermediate points having meaning (sunflower \& temperature). School clubs could be bar graph (numbers at clubs in one week) or line graph (attendance at each club over the course of the year).
Read the graph: Examples: the KS1 clubs are most popular, music clubs are well attended, there are more sports clubs than any other type of club.
Explain example 2: There was a significant increase in the number of children reading every night, but still the same number of children reading between 0-2 times per week.

I SEE REASONING - LKS2

Answers

Statistics (continued)
Explore: 10 children in the football cage, 7 children on the playground, 5 children in the forest.
Read the graphs:
Height above ground of child on slide

Weight of child on slide
Speed of child on slide

I SEE MATHS RESOURCES

A range of resources for developing deep, visual mathematics can be found at www.iseemaths.com

I See Reasoning - UKS2 provides a range of thoughtprovoking tasks and questions for children in Year 5\&6.

Maths Outside the Box is a compilation of 15 varied, thought-provoking mathematical investigations. The tasks are ideal for enriching mathematics for highattaining children in year 4.
iPad app Logic Squares, ideal for children in LKS2, gets children applying calculation facts and thinking strategically. Numbers have to be positioned to complete the crossword-style number sentences.
iPad apps $\$ See + - and \mid See $\times \div$ allow teachers to create a range of visual representations.

Information about conferences and in-school training led by Gareth Metcalfe can be found at www.iseemaths.com

